近年來,全世界的民用電子設備中的FPC需求量正在迅速增加,特別是在便攜電話之類的便攜電子設備和平板電視之類的薄型影像設備中消費了大量的FPC。兼有數字攝像的電路制品的便攜電話中所用的FPC,點數或者總面積大大超過了剛性PCB。在平板顯示(FPD)中的FPC配置成縱橫排列。隨著FPC等的大型化,FPC的使用量迅速增加。
隨著用途的多樣化和袖珍化,電子設備中使用的FPC要求高密度電路的同時,還要求質的意義上的高性能化。最近的FPc電路密度的變遷。采用減成法(蝕刻法)可以形成導體節距為30um以下的單面電路,導體節距為50um以下的雙面電路也已經實用化。連接雙面電路或者多層電路的導體層間的導通孔徑也越來越小,現在導通孔孔徑100um以下的孔已達量產規模。
基于制造母術的立場,高密度電路的可能制造范圍。根據電路節距和導通孔孔徑,高密度電路大致分為三種類型:(1)傳統的FPC;(2)高密度FP C;(3)超高密度FPC。
在傳統的減成法中,節距150um和導通孔孔徑15 um的FPC已經量產化。由于材料或者加工裝置的改善,即使在減成法中也可以加工30um的線路節距。此外,由于CO2激光或者化學蝕刻法等工藝的導入,可以實現50um孔徑的導通孔量產加工,現在量產的大部分高密度FPC都是采用這些技術加工的。
然而如果節距25um以下和導通孔孔徑50um以下,即使改良傳統技術,也難以提高合格率,必須導入新的工藝或者新的材料。現在提出的工藝有各種加工法,但是使用電鑄(濺射)技術的半加成法是最適用的方法,不僅基本工藝有所不同,而且使用的材料和輔助材料也有所差異。
另一方面,FPC接合技術的進步要求FPC具有更高的可靠性能。隨著電路的高密度化,FPC的性能提出了多樣化和高性能化的要求,這些性能要求在很大程度上依存于電路加工技術或使用的材料。